Dedekind sums and quadratic residue symbols of imaginary quadratic fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualizing imaginary quadratic fields

Imaginary quadratic fields Q( √ −d), for integers d > 0, are perhaps the simplest number fields afterQ. They are equal parts helpful first example and misleading special case. LikeZ, the Gaussian integersZ[i] (the cased = 1) have unique factorization and a Euclidean algorithm. As d grows, however, these properties eventually fail, first the latter and then the former. The classical Euclidean al...

متن کامل

Theta functions of quadratic forms over imaginary quadratic fields

is a modular form of weight n/2 on Γ0(N), where N is the level of Q, i.e. NQ−1 is integral and NQ−1 has even diagonal entries. This was proved by Schoeneberg [5] for even n and by Pfetzer [3] for odd n. Shimura [6] uses the Poisson summation formula to generalize their results for arbitrary n and he also computes the theta multiplier explicitly. Stark [8] gives a different proof by converting θ...

متن کامل

L - Functions and Class Numbers of Imaginary Quadratic Fields and of Quadratic Extensions of an Imaginary Quadratic Field

Starting from the analytic class number formula involving its Lfunction, we first give an expression for the class number of an imaginary quadratic field which, in the case of large discriminants, provides us with a much more powerful numerical technique than that of counting the number of reduced definite positive binary quadratic forms, as has been used by Buell in order to compute his class ...

متن کامل

Visualising the arithmetic of quadratic imaginary fields

We study the orbit of R under the Bianchi group PSL2(OK), where K is an imaginary quadratic field. The orbit, called a Schmidt arrangement SK , is a geometric realisation, as an intricate circle packing, of the arithmetic of K. This paper presents several examples of this phenomenon. First, we show that the curvatures of the circles are integer multiples of √ −∆ and describe the curvatures of t...

متن کامل

Class numbers of imaginary quadratic fields

The classical class number problem of Gauss asks for a classification of all imaginary quadratic fields with a given class number N . The first complete results were for N = 1 by Heegner, Baker, and Stark. After the work of Goldfeld and Gross-Zagier, the task was a finite decision problem for any N . Indeed, after Oesterlé handled N = 3, in 1985 Serre wrote, “No doubt the same method will work ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1991

ISSN: 0025-5645

DOI: 10.2969/jmsj/04330447